
W h i t e p a p e r B y

P e g a s u s O n e
1 4 4 0 N H a r b o r B l v d # 9 0 0
(7 1 4) 4 8 5 - 8 1 0 4
i n f o @ p e g a s u s o n e . c o m

MICROSERVICE
DESIGN
A G U I D E F O R E X E C U T I V E S

tel:+1(714)485-8104
mailto:info@pegasusone.com

C
O
N
TE
N
TS

P E G A S U S O N E • W W W . P E G A S U S O N E . C O M

01 P R E F A C E
M I C R O S E R V I C E D E S I G N

02 W H A T A R E M I C R O S E R V I C E S
F E A T U R E S A N D B E N E F I T S

04 D E S I G N I N G M I C R O S E R V I C E A R C H I T E C T U R E S
T H I N G S T O D E S I G N F O R

18 T A L K T O U S

10 I M P L E M E N T A T I O N T Y P E S
6 P R I M A R Y I M P L E M E N T A T I O N T Y P E S , A N D
T H E I R K E Y C H A R A C T E R I S T I C S

05 B E S T P R A C T I C E S F O R D E S I G N
5 B E S T P R A C T I C E S T O K E E P I N M I N D W H I L E
D E S I G N I N G M I C R O S E R V I C E S

17 B O O S T Y O U R O P E R A T I O N A L E F F I C I E N C Y
H O W W E C A N H E L P Y O U B U I L D Y O U R
M I C R O S E R V I C E A R C H I T E C T U R E

MICROSERVICE
DESIGN

In today’s business landscape, the competitive advantage often comes
down to how quickly you can deliver on your initiatives, and how easily you
adapt to changes and opportunities. Utilizing microservices may be the
solution to scale up your delivery and improve your operational agility. In this
white paper, we’ll take a deep dive into microservices, providing insight into
how they are designed, defining the six primary microservice architecture
implementation types, and explaining the key characteristics of each one.

PREFACE

www.pegasusone.com 01

WHAT ARE
MICROSERVICES

www.pegasusone.com 02

Microservices (or microservice architecture) is an architectural style that
structures applications as a collection of modular services. These services
are much easier to maintain and offer other features and
benefits, including:

Loose coupling to avoid cascading impacts to
other services and systems when a microservice
is changed
Independent deployment to circumvent testing
and deployment conflicts that can lead to
application failure
Business capability focus to enable
microservices to deliver on strategic outcomes
Small team ownership to support autonomy and
loose coupling and reduce complexity and
overhead
Scalability to operate more efficiently, perform
better when handling multiple tasks and requests,
and be able to scale as needs evolve
Fault tolerance to enable a service to continue
operating in cases of component failure
Availability with all hosts mapping to the same
storage to provide redundancy and deliver
uninterrupted services

www.pegasusone.com 03

Data analytics and BI (45%)
Database applications (41%)
Customer relationship management (38%)
E-commerce and customer service (35%)
Finance (34%)
Human resources (31%).

The microservices approach isn’t a silver
bullet for all scenarios, but according to
research by IBM, it is currently being used by a
significant percentage of companies
worldwide to support:

Independent and autonomous service
Scalability
Decentralization
Resilience
Real-time load balancing
High availability
Continuous delivery
API integration
Isolation from failures
Auto-provisioning

www.pegasusone.com 04

To get the most from a migration to microservice
architecture, you must design for:

DESIGNING
MICROSERVICE
ARCHITECTURES

1

TOP 5 BEST
PRACTICES FOR
MICROSERVICE
DESIGN

www.pegasusone.com 05

Avoid using the same backend datastore across your
microservices so that each team can select the database
that’s the best fit. While it may seem more efficient to
simply create and share a single database amongst
microservices, it can create problems. If a team has a
need to update the database structure they’re using, all the
other microservices attached to that database will have to
be changed as well.

GIVE EACH MICROSERVICE A SEPARATE DATA
STORE

TOP 5 BEST
PRACTICES FOR
MICROSERVICE
DESIGN

www.pegasusone.com 06

Adding or re-writing code in a deployed microservice?
Avoid editing the code in the existing microservice and
instead create a new microservice so the stability of the
deployed service is not at risk. Build, deploy, and test the
new microservice until it’s stable, and then merge it with
the original microservice.

CREATE A NEW MICROSERVICE WHEN ADDING
OR CHANGING CODE

2

TOP 5 BEST
PRACTICES FOR
MICROSERVICE
DESIGN

www.pegasusone.com 07

Build out each microservice separately, enabling it to
access repository files that are service-appropriate,
making introducing a new service easier. In some cases,
multiple microservices may access similar files of
differing revision levels. This may require those
administering the services to verify their use before
decommissioning old files during a clean-up.

BUILD EACH MICROSERVICE SEPARATELY

3

TOP 5 BEST
PRACTICES FOR
MICROSERVICE
DESIGN

www.pegasusone.com 08

Using containers like Docker makes the deployment
process much easier, enabling teams to use a single tool
to deploy every service within a given container. Once a
service is placed into a container, the tool intuitively knows
how to deploy it.

USE CONTAINERS FOR DEPLOYMENT

4

TOP 5 BEST
PRACTICES FOR
MICROSERVICE
DESIGN

www.pegasusone.com 09

Because many servers (especially those running
customer-facing code) perform the same core functions,
they can be treated as interchangeable. Running systems
in which individual servers perform unique, specialized
tasks lacks efficiency and prohibits essential backup. With
interchangeable servers, a server automatically takes over
if another server should fail.

REGARD SERVERS AS STATELESS

5

IMPLEMENTATION
TYPES

www.pegasusone.com 10

Now we’ll look at the 6 primary implementation types and their key
characteristics. These include fine-grained SOA, layered APIs over fine-
grained SOA, message-oriented state management over layered APIs, event-
driven state management over layered APIs, isolating state in layered APIs,
and replicating state in layered APIs.

Fine-grained services-oriented architecture
(SOA)
Layered APIs over fine-grained SOA
Message-oriented state management over
layered APIs
Event-driven state management over layered
APIs
Isolating state in layered APIs
Replicating state in layered APIs (event
sourcing)

FINE-GRAINED SOA

www.pegasusone.com 11

Used for larger, more modular services
Divides infrastructure into granular pieces
Services provide connectivity to external systems
Tight dependencies reduce the speed of change

CHARACTERISTICS

Architecture focused on a single purpose, with services
that support a common application while functioning
independently of each other.

WHAT IT IS

LAYERED APIS OVER FINE-
GRAINED SOA

www.pegasusone.com 12

Creates structure within the architecture
Provides easier insight into the purpose of individual
microservices
Enables easier management

CHARACTERISTICS

Levels up fine-grained SOA to expose applications, using
System APIS, Process APIs, and Experience APIS to
connect data to them.

WHAT IT IS

MESSAGE-ORIENTED STATE
MANAGEMENT OVER
LAYERED APIS

www.pegasusone.com 13

Uses a message queue to deliver consistent external
views
Converges events
Transmits states to disparate locations
Queries states through other microservices

CHARACTERISTICS

Replicates the state of business data between
microservices or data stores.

WHAT IT IS

EVENT-DRIVEN STATE
MANAGEMENT OVER
LAYERED APIS

www.pegasusone.com 14

Provides real-time data updates
Used for fraud detection, workflow notifications, news
feeds, etc.

CHARACTERISTICS

Utilizes standards-enforced queues to control time-
stamped actions (events) passing over the queue.

WHAT IT IS

ISOLATING STATE IN
LAYERED APIS

www.pegasusone.com 15

Adds persistence to each microservice
Provides consistency at the time of query rather than
within the interchange
Allows each microservice to contain its own state

CHARACTERISTICS

An alternative approach to event-driven microservices.

WHAT IT IS

REPLICATING STATE IN
LAYERED APIS (EVENT
SOURCING)

www.pegasusone.com 16

Consistent design
Reduces risk of failure in microservices
Improves speed-of-change
Delivers faster time-to-value

CHARACTERISTICS

Offers a single place for storage of state mutations that
enable isolated microservices to rebuild internal states.

WHAT IT IS

www.pegasusone.com 17

Need to boost your operational efficiency?

Find out what microservices can do for you. At
Pegasus One, our expert teams have helped
companies just like yours restructure their
applications. With a microservices
infrastructure, you can scale applications up,
ensure fault tolerance and provide high
availability. Contact us for a free consultation
to learn more about how to apply
microservices to your architecture.

TALK TO US

Cal l us a t (714) 485-8104
Wri te to us a t in fo@pegasusone.com

Or v is i t us on l ine a t : www.pegasusone.com

1440 N HARBOR BLVD #900 , FULLERTON, CA

