

Pegasus One White Paper

Best Practices For

Mobile App Development

Introduction

There have been many debates in the past regarding whether Mobile is the way to go forward in the future or

not, rather one-sided debates though. And as expected and predicted by experts and the rest—Mobile phones

have taken over the world technology scene by storm. It becomes imperative that to be counted among the

people who are ready for adaptation in this ever-changing world of technology to move ahead, from floppy's

to CDs, from Mainframes to PCs and now from Desktops to Mobile.

A big part of this transition is to make your products and services mobile ready, which means to have a pres-

ence on each and every leading mobile platform. And what better way than an app to dominate the mobile

landscape and grow your product even further. In this whitepaper, we proceed ahead with the steps and best

practices you may follow to achieve a great start on the most enterprising platform ever created.

Making an App : Best Practices

Consider Your audience

Before you take any time to build an app, consider

your audience. What do you hope to achieve? How

do you envision your audience using your app? The-

se are important questions to consider up-front.

Check the App Stores

Many times people come up

with a great idea for an app

and start to brainstorm how

to build it. There‘s only one

problem. Despite how unique

you might think your idea is,

there‘s a chance that someone might have already

built it, or something similar to it.

Invite potential users in Design process

One danger of any design process is working only

with your team and not involving the end users at all.

Then, when the design is done and is released to the

public, some or many aspects of your design might

not translate well to the real world. To avoid this

problem, involve potential end users in the design

process and use their feedback to make changes as

necessary.

Create a Story Board

The storyboard is one of the most important aspects

of the design process. This is where you lay out the

complete functionality of your app on paper. If there

are problems, you can resolve them at this stage. The

storyboard allows you to plan out all aspects of the

design, including future components, such as plug-

ins.

Make the App easy to understand

The app should be easy to understand with descrip-

tions to accompany graphics (if necessary) and addi-

tional instructions. One design flaw is relying too

much on images to tell the tale.

PEGASUSONE.COM | WHITEPAPER | App Development—Best Practices

Despite how unique you might

think your idea is, there’s an ex-

cellent chance that someone

might have already built it,

Avoid overuse of Graphics / Animations

Both graphics and animations can add a nice ―Wow‖

factor to your app but there‘s a major downside –

slow loading times which translate into a poor user

experience. Whenever possible, either avoid the use

of bitmaps or animations or limit their use to only

essential features.

Consider little details like button size/color

When working with a mobile interface, you have a

limited amount of space and some designers add too

many buttons/icons. Another consideration is the size

of the human fingertip. If the buttons/icons are too

small, users could make errors with selecting the

wrong one. Likewise, if there‘s not enough space be-

tween the buttons/icons, that can cause trouble as

well. If in doubt, test your layouts and get feedback.

Create a consistent workflow

This translates into making sure the user experience

remains the same on all platforms. This is an im-

portant consideration given that many users today

own a multitude of different devices.

Test the design

With any design,

this is the most

important aspect.

If you‘ve been

following the

strategies listed in this article you‘ll be testing your

app every step of the way. Still, it‘s important to test

the finished product and not only once but several

times with different users. If there are problems, fix

them, then test the result again.

PEGASUSONE.COM | WHITEPAPER | App Development—Best Practices

Whenever possible, either avoid

the use of bitmaps or anima-

tions or limit their use

Best Practices: Design

This is no longer a single-device world. The new mobil-

ity comes in new form factors: tablets, TVs, phones,

notebooks, smart watches, to name a few. By focus-

ing on just the handset experience or on just one de-

vice at a time, designers are missing an opportunity

to craft deeper connections with their end-users.

How do we help these devices work better together,

rather than just coexist? The answer lies in

―Distributed Experiences‖ — digital solutions that

reach across the various devices within an ecosys-

tem. Keeping that in mind, we should ensure to follow

a defined path on our journey to mobile excellence,

and it all begins with the right preparation for the

future.

Prototyping

Amateur mobile developers usually jump into devel-

opment phase as soon as they hit a million dollar

idea without giving a decent second thought about

how to go about that and making sure that the idea is

actually good to look at and interact with.

1. Jumping straight into the design is the fastest way

to slow down the project in the long run. Developers

often tend to skip the ―User Experience‖ part just to

hit deadlines, or often because they are least both-

ered about it. Skipping UX design always results in

delays down the road as questions arise and must be

discussed. So be sure to have a proper plan laid out

beforehand for the same. Also, the thin line between

UI and UX must be extremely well understood. UI

(User Interface) must distill down from the desired UX

(User Experience) and not the other way round.

2. Iterate: As much as possible. This ensures the prod-

uct is as close to final as possible, at every cycle of

development.

3. Less is More: Keep these magic words in mind

when designing your app. Instead of 10 buttons that

do 10 tasks try to incorporate only three even if they

perform just 9 tasks. It might cost you few quick func-

tions, but it will benefit you a lot by enhancing your

user experience a lot, making it easy to understand

your app.

4. Un-complicate: Crafting visually appealing UI that

remains intuitive and simple is more challenging than

creating a complicated UI. So take time to hit the right

strides at all times and avoid any elements that are

unnecessary/avoidable and add to clutter. Great de-

signs are all about taking away complexity rather

than layering on more of it.

A great way of simplifying the user interface is to re-

view every visual element and determine how it ben-

efits the user. Avoid trendy elements in design just

because everyone is doing it.

5. Design for thumbs: While designing remember that

almost every interaction with a modern mobile de-

vice is by a thumb or a finger. This calls for a simple

uncluttered interface. The fewer the elements that are

crammed together, the easier it is to navigate.

6. Readability: Readability is highly important and

using minimum font sizes will help achieve this. But

keep in mind not to make them small enough to be

painful to read. Also, maintain a uniform look and feel

across the app. This helps in navigation.

6. Perception of performance: Clearly the perfor-

mance of an app directly affects the user experience.

However, it is not always in your control. Network

conditions, device specs etc contribute to the per-

ceived performance of an app. So it is imperative to

provide the user with some information about his

actions that have been registered. Not notifying them

of the same could give a wrong perception of the app

being slow. Use spinners and loading indicators when

you know the task will take a while to complete. This

keeps the user engaged and interested in what's go-

ing on.

Takeaways

Never rush UX/UI design. It is one of the most im-

portant aspects of great app development and can

also be the difference between a good app and a

great app.

 SIMPLIFY, DECLUTTER

 FOLLOW BEST PRACTICES AND DESIGN GUIDELINES

 GIVE USERS A PERCEPTION OF PERFORMANCE, EVEN WHEN OUTSIDE YOUR

CONTROL

Best Practices: Architecture

When developing mobile applications, there are a number of key challenges where architecture and design are fun-

damentally different from that of a typical enterprise application. Careful consideration should be given to these mo-

bile architecture issues early in the development process in order to mitigate the downstream impact of poor archi-

tectural decisions. While some of these best practices also make sense for the development of non-mobile applica-

tions, many will become more readily apparent when developing on a mobile platform. The five most important are-

as for consideration, which are detailed throughout this document, include performance, usability, data access, se-

curity, and connectivity.

Performance

While more readily apparent in the previous years of mo-

bile development, the computing power available on mo-

bile devices still lags behind desktop and server counter-

parts although it is catching up fast with quad cores and

gigs of RAM thrown in every year. Still, devices feel slug-

gish and outdated with no time due to taxing and re-

source hogging apps. The quality of data connections

available on a mobile device is often highly variable based

on signal strength and is far inferior to broadband Internet

access in most cases.

Often during rapid application development, performance

considerations are ignored until the end of the project and

optimized only when necessary. In mobile development,

more consideration to performance constraints of the

mobile device may need to be given upfront in the design

process. Each platform has different code-level best prac-

tices for performance optimization depending upon the

programming language and frameworks available on the

platform. Some best practices, such as judicious use of

memory and limits on the number of unnecessary objects

created, however, can be applied across all platforms.

Care should especially be given to architectural decisions

that can limit performance and are also difficult to change

later in the development cycle, such as the design of web

service APIs and data formats.

General best practices for the design of web service APIs

for use in mobile development could be summed up as:

 Only retrieve data that the application needs

 Only retrieve data when the application needs it

These considerations stem mostly from the limited band-

width available to mobile devices. If possible, APIs used by

a mobile application should be designed to retrieve only

the most relevant and useful information— excluding any

extra data that is not used by the application. When de-

signing APIs to communicate with mobile applications,

one recommendation is to use a lightweight data format

like JSON instead of more verbose format such as XML in

order to make the best use of the limited bandwidth avail-

able to mobile devices.

PEGASUSONE.COM | WHITEPAPER | App Development—Best Practices

The use of a lightweight format like JSON will conserve

bandwidth, will allow results to be retrieved more quickly,

and also will generally enable faster de-serialization of

the data as it arrives on the mobile client.

Another important performance consideration on a mo-

bile device is battery life. If an application is constantly

polling a web service for updates or continually pro-

cessing data in the background, the battery will be

drained much more quickly. If architecturally feasible

(and if the push notification capabilities exist on the mo-

bile platform), the use of push notifications for providing

data updates is recommended over periodic polling.

Usability

At the end of the day, usability is one of the key factors

that will truly make or break user acceptance of an appli-

cation. Each of the major mobile platform software ven-

dors (Microsoft, Google, Apple) have released user

- experience specifications and guidelines specific to their

own platforms in an attempt to foster a consistent look

and feel across all applications on their platforms—and if

the guidelines are enforced by the vendor and followed

by developers, then the payoff is absolutely realized. The

user experience across applications on most of the major

platforms is seamless—for example, on the more strin-

gent iPhone and Windows Phone platforms, the naviga-

tion of menus and the look and feel of most applications

(down to the fonts and color schemes) are almost identi-

cal. This allows users to learn quickly how to use a new

application and instead focus on performing the task at

hand, rather than ―switching gears‖ between disparate

experiences or puzzling over how to interact with a new

application.

While each platform may have specific user interface (UI)

guidelines, the challenges of mobile application usability

are ubiquitous and many best practices can be applied

across all platforms.

1. Consider the limited screen real estate. No longer do

users have access to a 23-inch widescreen monitor to

display every single piece of information at once. Only

display the most relevant information and options on the

screen.

2. Menus and UI screens should not be cluttered within

rarely used options; rather they should be buried deeper

within a settings screen or a submenu. Conversely, if a

feature is used on a regular basis, consider assigning it to

a hardware button or making it readily available within

the UI.

3. For the sake of accessibility, avoid the use of small font

sizes in order to cram more information onto the screen.

Scrolling in mobile applications can be difficult for the end

user, so limit the need to scroll within screens where pos-

sible.

Data Access

One commonality between the most modern mobile plat-

forms (iPhone, Android, Windows Phone) is that none of

them offer any capability to connect directly to a data-

base – for good reason. The current mobile architecture

paradigm simply doesn‘t support this scenario for mod-

ern database platforms in their current state. Given that

most mobile applications communicate over the public

Internet, access to a database would require exposing

that database publicly – and in this age, no sane IT or

database administrator would publicly expose an in-

stance of Oracle, SQL Server, or MySQL outside the fire-

wall without measures like a VPN or IP restrictions in

place.

Rather than attempting to provide support for database

client connectivity, the current paradigm for data access

from mobile applications is based on web services.

For the example scenario of extending a common two-

tier enterprise application onto a mobile platform, usually,

a web services layer would first have to be created that

would exist in front of the database or APIs of the enter-

prise application. In the design of a web services layer for

a mobile application, logic around authentication, author-

ization, validation, and business rules should all be exe-

cuted on the server-side web services of the extended

application. As the web services are now exposed public-

ly for use by any properly authenticated user of your

application, the validity of the data and the user‘s right to

call the web service cannot be trusted without first per-

forming additional server-side checks and can be dupli-

cated on the client side

Security

As previously mentioned, data access on mobile plat-

forms generally requires some form of Internet-facing

service or data access point that can be communicated

with via a mobile device. Database servers and platforms

in their current state are not good candidates for public

exposure without additional layers of security that are

generally not feasible or cost-effective on mobile devic-

es.

Web servers are generally more hardened to attack and,

thus, web services are an excellent candidate for expo-

sure outside the firewall to mobile devices over the Inter-

net.

PEGASUSONE.COM | WHITEPAPER | App Development—Best Practices

Another security issue inherent to mobile platforms is the

security of data that exists locally on the device itself. Obvi-

ously, any mobile device can be compromised much easier

than a server residing within a secure data center. If possi-

ble, confidential data should not be stored on the mobile

device itself and should be stored instead on a back-end

server and downloaded to the device when necessary.

If for architectural reasons confidential data must be stored

on the device, then measures should be taken to encrypt the

data with a key that is not stored on the device, if possible.

Fortunately, mobile platform vendors are providing more

and more support for automatically encrypted disk storage,

which makes implementation of secure data storage on the

device much easier.

Connectivity

The final major architecture consideration for mobile appli-

cations is connectivity. It can no longer be assumed that the

application being built will have access to an ―always-on‖

high-speed Internet connection. In the wild, mobile devices

will frequently switch between different types of connec-

tions (e.g. Edge, 3G, or WiFi) with wildly varying speeds and

will often have no data connection. Often, the implementa-

tion of offline access for a mobile application simply doesn‘t

make sense business-wise, architecturally – perhaps the

application must have access to only the most relevant and

up-to-date data (e.g., traffic conditions), or when data is per-

sisted it must be immediately validated and processed (e.g.,

stock trades). There are use cases for which offline access is

absolutely necessary in order to maintain the end user‘s

productivity. One simple way to design offline access and

data synchronization involves the creation of two basic

components within the application— a caching mechanism

and a queuing mechanism.

Security

As previously mentioned, data access on mobile platforms

generally requires some form of Internet-facing service or

data access point that can be communicated with via a mo-

bile device. Database servers and platforms in their current

state are not good candidates for public exposure without

additional layers of security that are generally not feasible

or cost effective on mobile devices.

Web servers are generally more hardened to attack and,

thus, web services are an excellent candidate for exposure

outside the firewall to mobile devices over the Internet.

 In summary, while it can be challenging, there are well

known solutions for each of the previously mentioned is-

sues. And though each mobile platform will have its own

specific best practices for each area, many of the best prac-

tices are standard across all mobile platforms, regardless of

the technology used.

PEGASUSONE.COM | WHITEPAPER | App Development—Best Practices

Tools Available

With the wide growth of mobile and the burst in the number

of mobile apps available, it comes as a no surprise that there

are plenty of tools available for the creation of these apps.

Some are targeted towards the novice, the non-

programming person who just wants to try a hand at a sim-

ple app and some are advanced and consist of tools to and

techniques to make sure the app developer does his job

faster but better.

Native tools:

These are the native tools provided by phone OS vendors

and are usually the most popular tool of choice for many for

reasons of compatibility and future ready. They are usually

free and require custom coding of every part of the app. This

is best for developers who are experts in their trade and

need no other tools to develop their apps.

Although these tools are free for use, the App marketplaces

charge the developers annual fees for publishing their apps

to the respective marketplaces be it Apple App Store, Google

Play Store or the Windows Phone Store. (Blackberry App

World submissions being free for now).

Other Tools:

Since the mobile market is highly dictated by iOS, Android

and Windows devices, if you want to develop a particular

app, you may at least need to develop it for these three de-

vices/platforms unless you can afford to ignore one or all

these platforms. Expecting speed and cost-efficiency in na-

tive development doesn‘t make sense since it requires you

to obtain respective SDKs and tools of each platform, create

multiple code bases and design UI/UX for each platform ex-

clusively.

In these cases, it is more sensible to follow what modern

companies and app developers do i.e. ‗write once and run

anywhere‘ with cross-platform development since it allows

you to develop apps that can run on multiple platforms.

With cross-platform development, you can reduce the cost

of development below the threshold of the total sum of na-

tive development costs for each platform.

PhoneGap

PhoneGap is an open-source and simplest cross-platform

framework compared to Xamarin and Titanium. It allows

creating mobile apps utilizing Web APIs, i.e. it wraps up web

applications in a native app shell and then implements them

on native stores for different platforms. It uses a cloud-

based service called 'Build' with which you can compile apps

for several operating systems without the need to install

SDKs of each platform. Any PhoneGap application is simply

a collection of HTML pages which is rendered as a Web

View. To develop applications in PhoneGap, you need to use

HTML5, CSS and JavaScript.

Xamarin

Xamarin, originally called MonoTouch is another cross-

platform framework that has picked up the development

market with its own IDE. It works on C# within the .NET

framework and allows you to create native apps by utilizing

native APIs and UIs of each platform. Xamarin comes with

Xamarin. Forms library which allows you to write native UIs

for once and then share and convert them to platform-

specific UIs. Xamarin currently supports iOS, Android and

Windows platform. It also allows developing apps for Black-

berry by compiling Android apps.

Titanium

Titanium is a JavaScript-based development platform in

that, it uses JavaScript to write application codes with native

APIs and UI conventions of each platform. This means, it

doesn‘t try to accomplish the notion ‗write once and run

anywhere‘ but it attempts to write apps reusing JavaScript

with platform-specific features and performance. It is a bit

more complicated than Xamarin and PhoneGap there is

need to learn the UI API of each platform over and above

JavaScript which again is complex for building large apps.

Titanium currently supports only Android and iOS.

PEGASUSONE.COM | WHITEPAPER | App Development—Best Practices

When it comes to cross-platform development for mobile, the most popular frameworks that come to one‘s mind are Tita-

nium, Xamarin and PhoneGap. All these frameworks solve the purpose of developing a single app for multiple platforms.

However, there are vast technical, business and philosophical differences.

PhoneGap Xamarin Titanium

 Small and simple native API sets

enable easy porting to different

environments.

 Xamarin has TestCloud which al-

lows you to test your apps auto-

matically

 Better performance due to native

API usage, which also gives access

to elements and features of iOS

and Android

 High reusability with HTML5, CSS

and JavaScript. Anything written

as a web page can be easily

wrapped up as an app.

 Provides 100% code reuse with

Xamarin.Forms UI development

using shared code base and logic.

 Since it doesn’t use HTML5 and

CSS, the animations and DOM

elements are laggy and less re-

sponsive.

 Supports all platforms and oper-

ating systems which includes iOS,

Android, Windows Phone 8, Black-

berry, Firefox OS and Ubuntu.

 Supports patterns like MVC and

MVVM

 With Javascript, it ensures quick

and easy development

 Developers who are accustomed

to HTML/CSS/JavaScript, find it

easy to start working with Phon-

eGap.

 Xamarin.Android supports Google

Glass devices, Android Wear, and

Firephone

 The look and feel of Titanium

apps are better than apps built on

other platforms as the UI is essen-

tially native

 Lower performance of apps as the

original codes of the app remains

that of a web app.

 Impacts load time as it has its own

runtime

 Difficulty in developing complex

applications

 Too many fragmented libraries

and frameworks at a very basic

level

 Does not provide access to certain

Android specific UI controls.

 No support for third-party librar-

ies

 User interface of app varies de-

pending on the quality of Web

View rendered

 Does not support sharing of codes

outside Xamarin environment for

native or HTML5 development

You’ve got the idea, you know what you want it to look

like, but how much is your app going to cost you to make?

Since Apple launched the App Store in 2008, apps have be-

come more and more integrated into our everyday lives. We

use them for almost everything including our work, our lei-

sure time and even our health. Whatever your project be it

an event, business, service or promotion, an app can be a

seriously potent marketing tool. If managed correctly an

app can drive unlimited traffic and revenue your way and its

potential should not be underestimated.

While some apps can be phenomenally expensive to devel-

op, others can cost practically nothing. How much should

you set aside to create the app you have in mind and engi-

neer an appropriate user experience? To begin with, you

should consider the points below.

What do you have in mind

You probably have some idea of what genre or category

your app will fall into according to its subject and content,

but more important than content is the app‘s architecture. In

other words, the basic framework upon which it will operate.

Although the range of apps available varies infinitely, for the

most part, an app will fall into one of the following catego-

ries.

 Table-based apps.

 Games

 Database driven apps

 Web Based

 Custom Utilities

Decide whether you want your app to be native to a partic-

ular platform. It is worth mentioning that Apple enforces

quality control measures on the apps sold in the App Store

in a way that is not seen across other platforms. This may or

may not work in your favor depending on what sort of app

you are creating.

Developer Costs

During the initial stages of development, it is important to

consider the types of devices you are targeting with your

app, taking into account specific features and constraints

and understanding how they work with the scope of your

project. Competition means that the market is forever evolv-

ing and as phones and tablets change so do their screen

sizes. Your app needs to be compatible with all devices past,

present and future which carry your chosen platform.

Design Costs

If you are aiming high with your app, good design is an in-

vestment. Design can be costly because, with separate

screens, icons and buttons apps often have so many ele-

ments to design separately. Referring specifically to the cost

of designing an iOS app, According to one estimate, figure of

between $500 and $10,000 is what we are looking at here,

although between 25 and 50 percent should be added on to

this figure if you are planning to launch your app on the iPad

or other iOS devices. Android apps can cost more owing to

the range of devices and sizes the design has to be tailored

to.

Total Costs

There are several other figures to take into account. Total

costs are difficult to estimate because of the levels of varia-

bles involved but outside of development and design, you

need only consider the fees charged by your platform (Apple

charges 99 dollars per year and around 30 percent of sales)

and IT factors like servers and hosting.

PEGASUSONE.COM | WHITEPAPER | App Development—Best Practices

How much will it Cost?

How much will it Cost?

As with websites, starting off with an app template can be

both cost-effective and a huge time saver. What it means is

to basically start off with a clone app similar to your re-

quired app. Such templates are readily available at a very

low starting cost (some starting as low as $10). If your re-

quired app can get a head-start of months just by spending

10—50 $, then why not!

 Pegasus One

1440 N Harbor Blvd #900, Fullerton, CA 92835, USA

Phone: +1 (714) 485-8104

Email: info@pegasusone.com

© Copyright 2017 PegasusOne.

Conclusion:

Apps can be the perfect way to success in guessing by today‘s technology trends. Utilizing it rightly can amount

to a significant potential revenue stream considering it is the platform with largest potential customers. But, hav-

ing the right approach can be the difference between a success and a failure. With this whitepaper, Pegasus One

expects to be a helpful guide for your next big project. Our experts can help you to make an app that is beautiful,

functional and state-of-the-art.

